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Generating Asymptotics for factorially divergent
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Abstract. The algebraic properties of formal power series with factorial growth which
admit a certain well-behaved asymptotic expansion are discussed. These series form a
subring of R[[x]] which is closed under composition. An ‘asymptotic derivation’ is de-
fined which maps a power series to its asymptotic expansion. Leibniz and chain rules
for this derivation are deduced. With these rules asymptotic expansions of implicitly
defined power series can be obtained. The full asymptotic expansions of the number
of connected chord diagrams and the number of simple permutations are given as
examples.

Résumé. Nous discuterons des propriétés algébriques des séries entières formelles
à croissance factorielle dont le développement asymptotique se comporte "bien". Ces
séries forment un sous anneau de R[[x]], fermé sous composition. On définit une appli-
cation de "dérivation asymptotique" qui associe à une série entière son développement
asymptotique. On en déduit la formule de Leibniz et la dérivée de fonctions com-
posées pour cette dérivation. Grâce à ces règles, les développements asymptotiques
de séries entières implicitement définies peuvent être obtenus. Nous prendrons pour
exemple les développements asymptotiques complets du nombre de diagrammes de
cordes connexes et du nombre de permutations simples.

Keywords: asymptotic expansions, formal power series, chord diagrams, simple per-
mutations

1 Introduction

This article is concerned with sequences an which admit an asymptotic expansion of the
form,

an ∼ αn+βΓ(n + β)

(
d0 +

d1

(n + β− 1)
+

d2

(n + β− 1)(n + β− 2)
+ . . .

)
,

for some α, β ∈ R>0 and dk ∈ R. Sequences of this type appear in many enumeration
problems, which deal with coefficients of factorial growth. For instance, generating func-
tions of subclasses of permutations and graphs of fixed valence show this behaviour [1,
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7]. Furthermore, there are countless examples where perturbative expansions of physical
quantities, for example in quantum mechanics, quantum field theory, statistical physics,
matrix models and fluid dynamics, admit asymptotic expansions of this kind [4, 15, 20,
2, 18]. In this article these sequences will be interpreted as the coefficients of a formal
power series. It is well known that formal power series a ∈ R[[x]] whose coefficients
are bounded by some factorial growth |an| ≤ CαnΓ(n + β) are closed under addition,
multiplication, inversion and composition. This article is an attempt to convince the
reader that even more structure can be found if we restrict ourselves to formal power
series which admit a well-behaved asymptotic expansion as above. This approach is
inspired by the work of Bender [6] in which the asymptotic behaviour of the composi-
tion of a mildly growing power series with a rapidly growing power series is analyzed.
These structures bear many resemblances to the theory of resurgence established by Jean
Ecalle [16]. Resurgence assigns a special role to power series which diverge factorially,
as they offer themselves to be Borel transformed. By Borel transformation, resurgence
can be used to assign a unique function to a factorially divergent series, which could
be interpreted as the generating function of the series. In fact, the presented formalism
can be seen as a toy model of resurgence, which is unable to fully reconstruct functions
from asymptotic expansions, but does not rely on Borel transform and offers itself for
combinatorial applications. For an illuminating account on resurgence theory, we refer
to David Sauzin’s review [21]. In this extended abstract, we refer to [10] for the proofs.

1.1 Statement of results

Power series with well-behaved asymptotic expansions, as in the example above, form a
subring of R[[x]], which will be denoted as R[[x]]αβ. A linear map, Aα

β : R[[x]]αβ → R[[x]],
can be defined which maps a power series to the asymptotic expansion of its coefficients. This
map turns out to be a derivation, that means it fulfills a Leibniz rule

with f , g ∈ R[[x]]αβ (Aα
β( f · g))(x) = f (x)(Aα

βg)(x) + (Aα
β f )(x)g(x)

and a chain rule, (Aα
β( f ◦ g))(x) = f ′(g(x))(Aα

βg)(x) +
(

x
g(x)

)β

e
g(x)−x
αxg(x) (Aα

β f )(g(x)),

where ( f · g)(x) = f (x)g(x) and ( f ◦ g)(x) = f (g(x)). Note that the chain rule involves
a peculiar correction term if f has a non-trivial asymptotic expansion. The formalism
can be applied to calculate the asymptotic expansions of implicitly defined power series.
This procedure is similar to the extraction of the ordinary derivative of an implicitly
defined function using the implicit function theorem. In Section 5, we demonstrate the
apparatus by stating the full asymptotic expansions for the number of connected chord
diagrams and for the number of simple permutations.
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1.2 Notation

We will denote a (formal) power series f ∈ R[[x]] in the usual ‘functional’ notation
f (x) = ∑∞

n=0 fnxn. The coefficients of a power series f will be expressed by the same
symbol with the index attached as a subscript fn or with the coefficient extraction opera-
tor [xn] f (x) = fn. Ordinary (formal) derivatives are expressed as f ′(x) = ∑∞

n=0 n fnxn−1.
The ring of power series which represent expansions of functions which are analytic
at the origin, or equivalently power series with non-vanishing radius of convergence,
will be denoted as R{x}. We will make use of the O-notation: O(an) denotes the set
of all sequences bn such that lim supn→∞ |

bn
an
| < ∞ and o(an) all sequences bn such that

limn→∞
bn
an

= 0. Equations of the form an = bn +O(cn) are to be interpreted as statements
an − bn ∈ O(cn) as usual. See [5] for an introduction to this notation.

2 Prerequisites

We start by establishing a suitable notion of a power series with a well-behaved asymp-
totic expansion.

Definition 2.1. For given α, β ∈ R>0 let R[[x]]αβ be the subset of R[[x]], such that f ∈
R[[x]]αβ if and only if there exists a sequence of real numbers (c f

k )k∈N0 , which fulfills

fn =
R−1

∑
k=0

c f
k αn+β−kΓ(n + β− k) +O (αnΓ(n + β− R)) ∀R ∈N0. (2.1)

Corollary 2.1. R[[x]]αβ is a linear subspace of R[[x]].

Remark 2.1. The expression in (2.1) represents an asymptotic expansion or Poincaré ex-
pansion with the asymptotic scale αnΓ(n + β) [14, Ch. 1.5].

Remark 2.2. The subspace R[[x]]αβ includes all (real) power series whose coefficients only
grow exponentially: R{x} ⊂ R[[x]]αβ.

The central idea in this article is to interpret the coefficients c f
k in the asymptotic expansion

as another power series. Therefore, we define a linear map Aα
β on R[[x]]αβ, which maps a

formal power series to its asymptotic expansion:

Definition 2.2. Let Aα
β : R[[x]]αβ → R[[x]] be the map that associates a power series

Aα
β f ∈ R[[x]] to every power series f ∈ R[[x]]αβ such that

fn =
R−1

∑
k=0

αn+β−kΓ(n + β− k)[xk](Aα
β f )(x) +O (αnΓ(n + β− R)) . (2.2)
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Example 2.1. The power series f ∈ R[[x]] associated to the sequence fn = n! clearly
fulfills the requirements of Definition 2.1 with α = 1 and β = 1. Therefore, f ∈ R[[x]]11
and (A1

1 f )(x) = 1.

3 A derivation for asymptotics

Proposition 3.1. R[[x]]αβ forms a subring of R[[x]]: If f , g ∈ R[[x]]αβ, then f · g ∈ R[[x]]αβ.
Moreover, Aα

β is a derivation:

(Aα
β( f · g))(x) = f (x)(Aα

βg)(x) + g(x)(Aα
β f )(x). (3.1)

Sketch of proof. Set h(x) = f (x)g(x) and R ∈ N0 with n > 2R. We can rewrite the usual
Cauchy product formula for power series as

hn =
n

∑
m=0

fn−mgm =
R−1

∑
m=0

fn−mgm +
R−1

∑
m=0

fmgn−m +
n−R

∑
m=R

fmgn−m. (3.2)

Definition 2.2 guarantees that the first two sums have an asymptotic expansion as in
Definition 2.1 for large n. The sum of both constitutes an asymptotic expansion of hn.
It is sufficient to verify this claim for the first sum, where we substitute the asymptotic
expansion from (2.2) of fn−m up to order R−m:

R−1

∑
m=0

fn−mgm =
R−1

∑
k=0

αn+β−kΓ(n + β− k)
k

∑
m=0

gmck−m +O (αnΓ(n + β− R)) . (3.3)

The inner sum ∑k
m=0 gmck−m is the k-th coefficient of the product g(x)(Aα

β f )(x).
It remains to be shown that the last sum in (3.2) is negligible. It can be done using

basic properties of the Γ-function.

4 Composition of power series in R[[x]]αβ
The following theorem is a straightforward generalization of Bender’s Theorem 1 in [6]
to the multivariate case f ∈ R{y1, . . . , yL}.

Theorem 4.1. If g1, . . . , gL ∈ R[[x]]αβ with gl
0 = 0 for l ∈ {1, . . . , L} and f ∈ R{y1, . . . , yL},

a function in L variables, which is analytic at the origin, then with h(x) = f (g1(x), . . . , gL(x))
the power series h is in R[[x]]αβ and

(Aα
βh)(x) = (Aα

β( f (g1, . . . , gL)))(x) =
L

∑
l=1

∂ f
∂gl (g1, . . . , gL)(Aα

βgl)(x). (4.1)
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It is obvious that a general chain rule cannot be as simple as the ordinary chain rule
for differentiation. For general f , g: (Aα

β( f ◦ g))(x) 6= f ′(g(x))(Aα
βg)(x). Otherwise, the

requirement that the generating function g(x) = x has a trivial asymptotic expansion,
(Aα

βg)(x) = 0, would imply that all f ∈ R[[x]]αβ have trivial asymptotic expansions. We
can fix that by including a correction term into the chain rule:

Theorem 4.2. If f , g ∈ R[[x]]αβ with g0 = 0, g1 = 1, then f ◦ g, g−1 ∈ R[[x]]αβ and

(Aα
β( f ◦ g))(x) = f ′(g(x))(Aα

βg)(x) +
(

x
g(x)

)β

e
g(x)−x
αxg(x) (Aα

β f )(g(x)), (4.2)

(Aα
βg−1)(x) = −g−1′(x)

(
x

g−1(x)

)β

e
g−1(x)−x
αxg−1(x) (Aα

βg)(g−1(x)). (4.3)

Remark 4.1. We refer to [10] for the proof. It is technical and exploits the Lagrange
inversion formula to express f ◦ g−1 as,

[xn] f (g−1(x)) =
n

∑
m=0

(
n + β + 1

m

)
[xn−m]B(x)A(x)m ∀n ∈N0,

with A(x) :=
x

g(x)−1
x and B(x) := f (x)g′(x)

(
g(x)

x

)β
. The left hand side gives a good

approximation for large n asymptotics if we sum over the first C log n terms, where C
depends on f and g. This can be used to obtain the complete asymptotics of [xn] f ◦
g−1(x). The statement of the theorem follows immediately from this.

Remark 4.2. Bender and Richmond [8] established that [xn](1 + g(x))γn+δ = nγe
γg1

α gn +
O(gn) if g ∈ R[[x]]αβ. Using Lagrange inversion the first coefficient in the expansion of
the compositional inverse in (4.3) can be obtained from this. Therefore, Theorem 4.2 can
be seen as a generalization of Bender and Richmond’s result. In the same article Bender
and Richmond proved a similar theorem as Theorem 4.2 for power series f which grow
more rapidly than the factorial such that n fn−1 ∈ o( fn). Theorem 4.2 establishes a link
to the excluded case n fn−1 = O( fn).

Remark 4.3. The chain rule

(Aα
β( f ◦ g))(x) = ( f ′ ◦ g)(x)(Aα

βg)(x) +
(

x
g(x)

)β

e
g(x)−x
αxg(x) ((Aα

β f ) ◦ g)(x) (4.4)

exposes a peculiar algebraic structure. It would be useful to have a combinatorial inter-

pretation of the
(

x
g(x)

)β
e

g(x)−x
αxg(x) term.
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5 Applications

5.1 Chord diagrams

A chord diagram with n-chords is a circle with 2n points, which are labeled with inte-
gers 1, . . . , 2n and connected in disjoint pairs by n-chords. There are (2n− 1)!! of such
diagrams.

5.1.1 Connected diagrams

A chord diagram is connected if no set of chords can be separated from the remaining
chords by a line which does not cross any chords. Let I(x) = ∑n=0(2n − 1)!!xn and
C(x) = ∑n=0 Cnxn, where Cn is the number of connected chord diagrams with n chords.
I(x) and C(x) are related by,

I(x) = 1 + C(xI(x)2). (5.1)

See for instance [17] for a proof. This functional equation can be solved for the coeffi-
cients of C(x) by basic iterative methods. The first few terms are,

C(x) = x + x2 + 4x3 + 27x4 + 248x5 + · · · (5.2)

This sequence is entry A000699 in Neil Sloane’s integer sequence on-line encyclopedia
[22].

Because (2n − 1)!! = 2n+ 1
2√

2π
Γ(n + 1

2), we have I, C ∈ R[[x]]21
2

and (A2
1
2
I)(x) = 1√

2π
.

Application of Theorem 4.2 gives,

(A2
1
2
I)(x) = 2xI(x)C′(xI(x)2)(A2

1
2
I)(x) +

(
x

xI(x)2

) 1
2

e
xI(x)2−x
2x2 I(x)2 (A2

1
2
C)(xI(x)2) (5.3)

Using (5.1), we obtain

(A2
1
2
C)(x) =

1 + C(x)− 2xC′(x)√
2π

e−
1

2x (2C(x)+C(x)2). (5.4)

We can still simplify this using the differential equation C′(x) = C(x)(1+C(x))−x
2xC(x) which

follows from the linear differential equation 2x2 I′(x) + xI(x) + 1 = I(x) and (5.1),

(A2
1
2
C)(x) =

1√
2π

x
C(x)

e−
1

2x (2C(x)+C(x)2). (5.5)

This is the full asymptotic expansion of Cn. The first few terms are,

(A2
1
2
C)(x) =

e−1
√

2π

(
1− 5

2
x− 43

8
x2 − 579

16
x3 − 44477

128
x4 − 5326191

1280
x5 + · · ·

)
. (5.6)
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Expressed in the traditional way using (2.2) this becomes

Cn ∼ ∑
k≥0

2n+ 1
2−kΓ(n +

1
2
− k)[xk](A2

1
2
C)(x) =

√
2π ∑

k≥0
(2(n− k)− 1)!![xk](A2

1
2
C)(x)

(5.7)

= e−1
(
(2n− 1)!!− 5

2
(2n− 3)!!− 43

8
(2n− 5)!!

−579
16

(2n− 7)!!− 44477
128

(2n− 9)!!− 5326191
1280

(2n− 11)!! + · · ·
) (5.8)

The first term, e−1, in this expansion has been computed by Kleitman [19], Stein and
Everett [23] and Bender and Richmond [8] each using different methods. With the pre-
sented method an arbitrary number of coefficients can be computed.

The probability of a random chord diagram with n chords to be connected is therefore
e−1(1− 5

4n ) +O(
1

n2 ).

5.1.2 Monolithic diagrams

A chord diagram is called monolithic if it consists only of a connected component and
of isolated chords which do not ‘contain’ each other [17]. That means with (a, b) and
(c, d) the labels of such edges we do not allow a < c < d < b or c < a < b < d. Let
M(x) = ∑n=0 Mnxn be the generating function of monolithic chord diagrams. Following
[17], M(x) fulfills

M(x) = C
(

x
(1− x)2

)
. (5.9)

Using the A2
1
2

derivative on both sides of this equation together with the result for

(A2
1
2
C)(x) in (5.5) gives

(A2
1
2
M)(x) =

1√
2π

1
(1− x)

x
M

e1− x
2−

(1−x)2
2x (2M(x)+M(x)2)

=
1√
2π

(
1− 4x− 6x2 − 154

3
x3 − 1610

3
x4 − 34588

5
x5 + · · ·

)
.

(5.10)

The probability of a random chord diagram to be monolithic is therefore 1 − 4
2n−1 +

O( 1
n2 ) = 1− 2

n +O( 1
n2 ).

5.2 Simple permutations

A permutation is called simple if it does not map a non-trivial interval to another inter-
val. Expressed formally, the permutation π ∈ Ssimple

n ⊂ Sn if and only if π([i, j]) 6= [k, l]
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for all i, j, k, l ∈ [1, n] with 2 ≤ |[i, j]| ≤ n − 1. See Albert et al. [1] for more de-
tailed exposition of simple permutations or [12] for a more recent survey. Set S(x) =

∑∞
n=4 |S

simple
n |xn and F(x) = ∑∞

n=1 n!xn. Following [1], S(x) and F(x) fulfill the functional
equation

F(x)− F(x)2

1 + F(x)
= x + S(F(x)). (5.11)

This can be solved iteratively for the coefficients of S(x):

S(x) = 2x4 + 6x5 + 46x6 + 338x7 + 2926x8 + · · · (5.12)

In Neil Sloane’s online encyclopedia this sequence is entry A111111 [22] with a slightly
different convention: A111111 = x + 2x2 + S(x).

As F(x) ∈ R[[x]]11 and (A1
1F) = 1, we obtain the full asymptotic expansion of S(x)

after application of Theorem 4.2,

(A1
1F)(x) = F′(x)

x
F(x)

e
F(x)−x
xF(x) (A1

1S)(F(x)). (5.13)

Using the functional equation (5.11) or the compositional inverse of F(x), F−1(F(x)) = x
as well as the differential equation x2F′(x) + (x − 1)F(x) + x = 0, it is straightforward
to solve this for (A1

1S)(x),

(A1
1S)(x) = F−1′(x)

x
F−1(x)

e
F−1(x)−x
xF−1(x) =

xF−1(x)
x− (1 + x)F−1(x)

e
F−1(x)−x
xF−1(x) (5.14)

=
1

1 + x
1− x− (1 + x)S(x)

x

1 + (1 + x)S(x)
x2

e
−

2+(1+x) S(x)
x2

1−x−(1+x) S(x)
x . (5.15)

Note that (5.11) implies that x−x2

1+x = F−1(x) + S(x), which means F−1(x) and S(x) differ
only by an asymptotically negligible quantity, (i.e. some p ∈ kerA1

1) and (A1
1F−1)(x) =

−(A1
1S)(x).

The terms of (A1
1S)(x) can easily be computed iteratively:

(A1
1S)(x) = e−2

(
1− 4x + 2x2 − 40

3
x3 − 182

3
x4 − 7624

15
x5 + · · ·

)
. (5.16)

By (2.2), this is an expression for the asymptotics of the number of simple permutations:

|Ssimple
n | ∼ e−2n!

(
1− 4

1
n
+ 2

1
n(n− 1)

− 40
3

1
n(n− 1)(n− 2)

−182
3

1
n(n− 1)(n− 2)(n− 3)

− 7624
15

1
n(n− 1)(n− 2)(n− 3)(n− 4)

+ · · ·
)

.

(5.17)
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Albert et al. [1] calculated the first three terms of this expansion. With the presented
methods the calculation of the asymptotic expansion (A1

1S)(x) up to order n is as easy
as calculating the expansion of S(x) or F−1(x) up to order n + 2.

Remark 5.1. The examples above are chosen to demonstrate that given a (functional)
equation which relates two power series in R[[x]]αβ, it is an easy task to calculate the full
asymptotic expansion of one of the power series from the asymptotic expansion of the
other power series.

Applications include functional equations for ‘irreducible combinatorial objects’. The
two examples fall into this category. Irreducible combinatorial objects were studied in
general by Beissinger [3].

Remark 5.2. Dyson-Schwinger equations in quantum field theory can be stated as func-
tional equations of this form [13, 9]. In [11] we elaborated on this idea in the scope of
zero-dimensional quantum field theory and the associated graph counting problems.
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